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ABSTRACT
Web Extensions (add-ons) allow clients to customize their Web
browsing experience through the addition of auxiliary features to
their browsers. The add-on ecosystem is a market differentiator for
the Firefox browser, offering contributions from both commercial
entities and community developers.

In this paper, we present the Telemetry-Aware Add-on Recom-
mender (TAAR), a system for recommending add-ons to Firefox
users by leveraging separate models trained to three main sources
of user data: the set of add-ons a user already has installed; usage
and interaction data (browser Telemetry); and the language setting
of the user’s browser (locale). We build individual recommendation
models for each of these data sources, and combine the recommen-
dations they generate using a linear stacking ensemble method.
Our method employs a novel penalty function for tuning weight
parameters, which is adapted from the log likelihood ratio cost func-
tion, allowing us to scale the penalty of both correct and incorrect
recommendations using the confidence weights associated with
the individual component model recommendations. This modular
approach provides a way to offer relevant personalized recommen-
dations while respecting Firefox’s granular privacy preferences and
adhering to Mozilla’s lean data collection policy.

To evaluate our recommender system, we ran a large-scale ran-
domized experiment that was deployed to 350,000 Firefox users
and localized to 11 languages. We found that, overall, users were
4.4% more likely to install add-ons recommended by our ensemble
method compared to a curated list. Furthermore, the magnitude of
the increase varies significantly across locales, achieving over 8%
improvement among German-language users.
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1 INTRODUCTION
Modern Web browsers enable user customization via extensions,
which add non-core features or allow a user to personalize the
browser to their individual needs. Some of the most popular classes
of extensions for the Firefox browser are ad blockers, password
managers, and download helpers [36]. As well as benefiting users
directly through expanded functionality or convenience, the exten-
sion ecosystem provides indirect value to Mozilla in the form of
increased user engagement [26] and decreased churn associated
with browser customization.

As such, it is desirable to ensure that Firefox users are able to
easily discover extensions that are most relevant to them. However,
until recently, this task has primarily been up to the users them-
selves. Extensions (known as “add-ons” in the Firefox environment)
are principally available from addons.mozilla.org [36] (abbreviated
as AMO), which may be visited as a normal website or from the “Get
Add-ons” panel within Firefox’s Add-ons Manager (accessible by
navigating to about:addons). Extensions are generally discovered
by searching this site, although recommendations are sometimes
offered in the form of hand-curated lists or collections featured
on AMO or around the Web. This has likely presented a barrier to
engagement with the extension ecosystem. Despite the wealth of
extensions available, we have found that a significant proportion of
Firefox users do not have any extensions installed, and of those who
do, the vast majority only have very few. Furthermore, the distribu-
tion of extensions that are installed is substantially skewed towards
the most popular offerings. In this paper, we seek to remedy this
situation by developing a multi-faceted system for recommending
extensions to users, and demonstrating that providing discover-
able, personalized extension recommendations does in fact lead to
increased extension installation.

https://doi.org/10.1145/3320435.3320450
https://doi.org/10.1145/3320435.3320450
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Recommender systems typically determine relevant recommen-
dations on the basis of similarity either between items (content-
based filtering) or between users (collaborative filtering). Since
extensions have only limited relevant metadata, a collaborative ap-
proach is a better fit in our setting. However, collaborative methods
are known to suffer in the presence of sparsity, when a majority of
users have interactedwith only few items or vice-versa. This is often
addressed by augmenting the user-item matrix with external infor-
mation on user preferences to improve the similarity calculation.
However, the principal source of user data available to us, Firefox
browser Telemetry [35], provides only a limited window into a
user’s qualitative preferences. In accordance with Mozilla’s privacy
policy [33], it consists mainly of technical usage measurements,
such as the user’s computing environment (e.g. OS, hardware, in-
stalled add-ons), as well as interaction and usage data, including
time active and number of pages loaded. Additionally, Firefox’s
privacy settings enable granular control over what information is
shared via Telemetry. This leads to both sparsity and variability in
the range information available for selecting recommendations.

To overcome these challenges, we develop a recommender sys-
tem for extensions centered on robustness to varying degrees of
data sparsity. We adopt a modular approach, implementing multiple
recommenders, each tailored to a particular subset of the available
data. The first is a traditional collaborative filtering model which
uses extension installations as implicit ratings, trained using a stan-
dard matrix factorization technique. As a fallback for cases where
extension installations are lacking, we employ a novel approach
to assess similarity between users in terms of other Telemetry fea-
tures. We first determine groups of users with “similar interests”
by clustering them on their item ratings.

We then compute pairwise similarities between users in terms
of their Telemetry features. A likelihood ratio criterion determines
which of these similarity values are “large enough” for the purpose
of providing recommendations, based on how likely a pair of users
are to belong to the same interest cluster. As well as bypassing the
issue of choosing a similarity threshold, this approach entails a form
of fuzzy matching where the set of similar users may span multiple
clusters. A final recommender module offers simple demographic
filtering for browser localization (language setting), drawing recom-
mendations from the most popular extensions in the user’s locale.
To address potential privacy implications for locales with very few
users, the extension frequencies are computed in a differentially
private manner.

For a given user, recommendations are obtained from each of
these component modules and combined using a linear ensemble
method. Each component recommender is designed to return con-
fidence weights along with its recommendations, reflecting their
relevance. These scores are aggregated across components in the
ensemble to produce final scores for each recommendation, the top-
most of which are surfaced to the user. The ensemble weights are
selected to optimize a penalty function known as the log likelihood
ratio cost, which to our knowledge has not previously been used to
train a recommender system.

We have implemented this recommender system as a Web ser-
vice1 available from the “Get Add-ons” panel of the Firefox Add-
ons Manager. To evaluate its performance relative to hand-curated
recommendations, we deployed a large-scale randomized experi-
ment which reached 350,000 Firefox users. The results presented
in Section 3.3 show improved installation rates, i.e. acceptance of
recommendations, in the ensemble study branch compared to both
a partially-curated (hybrid) and fully-curated (control) list of add-
ons. Earlier results comparing the ensemble strategy against the
performance of individual component models also demonstrate
superior installation rates for the ensemble branch. This suggests
that weaker information leveraged by the component models not
utilizing the client extension installations can in fact serve to refine
recommendations provided by a standard collaborative filtering
method.

1.1 Related Work
The task of locating extensions is desirable from the perspective of
improving the user experience through personalization [58] and
increasing the diversity of interactions with the overall ecosystem.
However, top-N item recommendation [14] is a nuanced task com-
plicated by both the vastness of the search space and theweak signal
present in the implicit measurements available in the Telemetry
data.

Collaborative filtering methods [13] leverage the relationship
between users and the items to be recommended, in addition to
item-item relationships, in order to compute meaningful recommen-
dations for users. User-item relationships can be modelled either
through explicit ratings (e.g. numerical scoring) or implicit ones (e.g.
was the item ever used?) [37]. While explicit rating is convenient,
it might not always be available.

Prior work on alleviating the cold start problem in collaborative
filtering has focused on incorporating additional data sources to
supplement the standard user-itemmatrix [50, 51, 55]. This includes
cross-domain recommender systems, which tend to draw on ratings
expressed by the same users for different types of items [5, 11, 54],
and approaches leveraging social media [22, 46]. External data is
particularly useful in domains where user-item ratings tend to be
sparse, such as recommending apps [2, 52] or locations of interest
[8, 12, 53]. Such approaches typically combine all data into a single
model. However, in accordance with Mozilla’s lean data collection
practices, the correlation of independent data sources with browser
telemetry is an undesirable solution, as it may erode client privacy.
The use of ensembles for improving recommendations has also
been explored [1, 14, 19, 45, 48], although these generally apply
multiple models to the same or related datasets. Previous collabo-
rative filtering models have also incorporated clustering methods
[16, 39, 40, 42], where clusters are used to define the user similarity
neighborhoods. Finally, the log likelihood ratio cost metric origi-
nated in [3] and is commonly used in forensics [24, 27]. However,
as noted above, we are not aware of it having been used previously
in training ensemble weights for a recommender system.

1https://github.com/mozilla/taar

https://github.com/mozilla/taar


Figure 1: Client feature vector

2 METHODOLOGY
In order to determine the features most relevant to recommending
extensions, we individually evaluate the predictive power of a large
set of Telemetry measurements via an iterative tree classification
method, so as to assess univariate efficacy in yielding stable and
high precision recommendations [6]. The usual pitfall of threshold
selection is mitigated by the fact that the number of features we can
realistically incorporate is bounded by practical online performance
constraints. We retain the top 8 performing features, in addition
to the add-on installation information, yielding the client feature
vector depicted in Figure 1.

The retained Telemetry measurements are:
• Categorical features:
– geographic city: the city closest to the origin IP address
(best guess)

– locale: the application localization identifier based on a
combined country/region[18] and language[17] indicator.

– operating system: the host operating system
• Continuous features:
– subsession length: the length of the current browser sub-
session in seconds

– bookmark count: the number of registered bookmarks
saved to the client profile

– open tab count: the number of open browser tabs
– total uri: the number of URIs the user has visited
– unique TLDs: the number of unique TLDs (Top Level Do-
mains) the client has visited 2

• Add-on features:
– add-ons installed

More information on these fields, as well as the full set of available
measurements, is provided in the Firefox Probe Dictionary [34].

As the add-on ecosystem contains a variety of extensions from a
diverse community of contributors, code quality can vary. In order
to safeguard the user experience, we restrict recommendations
to a manually curated whitelist of 171 add-ons. This approach
ensures that only high quality Web Extensions are recommended to
clients: whitelisted add-ons have undergone complete code review
by Firefox engineers to ensure code quality and compliance with
AMO Policies [32]. Additionally, the whitelist will play a key role
in the privacy protections employed by the locale recommender
described in Section 2.3.

The validation and tuning of our recommendation models is
complicated by the fact that ground truth remains unknown for
users in the test set. Previous works have focused on developing

2No specific website information is ever stored. This value corresponds to the count
computed on the client, sent via Telemetry as an Integer value.

evaluation metrics for recommender systems in an industrial con-
text [7, 25, 44]. Instead, we adopt the following approach: we select
a subset of clients with at least 4 add-ons installed, and for each
client, we obfuscate a subset of their add-ons by masking. We can
then generate recommendations based on the unmasked add-ons,
as well as the other Telemetry features, taking the masked add-ons
as ground truth. Recommendations are evaluated as either correct
or incorrect based on their presence in that client’s set of masked
add-ons. This approach is used for both the feature selection out-
lined above and parameter tuning of the individual recommender
modules described in Sections 2.1–2.4.

2.1 Add-on-based Recommender
This recommender module adopts a standard collaborative filtering
approach with implicit ratings, where users are assumed to be
similar if they have similar add-ons installed. We build a latent
factor model using a matrix factorization technique, alternating
least squares (ALS) [21], to decompose the user/add-on matrix. This
approach is chosen as it proves to be as good as other techniques
in the literature, while being scalable to very large datasets by
design [56]. Moreover, the ALS algorithm is readily available in
off-the-shelf distributed computing packages such as Apache Spark
[49].

To compute the model, a master list of valid add-ons is generated
by querying the addons.mozilla.org API and filtering according
to a set of baseline validity criteria. We then construct a model
matrix M , setting Mi, j = 1 if user i has installed add-on j from
the master list and 0 otherwise. Since users typically install only
few add-ons, this matrix will be sparse. We then map the user-item
interactions represented inM to a latent space by decomposing it
into the product of two matrices using ALS: one representing how
much users like each latent feature, and the other how each feature
is relevant to the add-on. Our model is retrained using these steps
on a weekly basis.

An important advantage to this approach is that recommenda-
tions will be accompanied by a confidence weight quantifying their
relevance for the candidate user. We will use this weight when
combining this module with other recommendation strategies as
discussed in Section 2.4. However, as this model is based purely
on the add-ons portion of the user Telemetry data, it has a few
shortcomings: new users might receive less interesting recommen-
dations, and new add-ons might not get recommended. Indeed,
users must have at least one add-on installed in order to obtain
recommendations from this model. Nonetheless, cases where this
approach performs poorly can be mitigated when combined with
the other recommendation modules in the ensemble.

2.2 Telemetry-based Recommender
Given a candidate client for which recommendations are sought, the
Telemetry-based recommendation module seeks to identify clients
which are similar in terms of their non-add-on Telemetry features
(Figure 1). We refer to clients with installed add-ons against which
candidate clients are compared (via the non-add-on Telemetry fea-
tures) as donors.

A standard approach in this scenario is to determine the K near-
est neighbor donors to the candidate client, and to recommend the

addons.mozilla.org


Figure 2: Probability density of same vs. different cluster
membership as a function of pairwise similarity computed
on non-add-on features

donors’ add-ons to the candidate. However, in order to ensure diver-
sity in the set of donors surfaced for a candidate, and to calibrate the
notion of “sufficiently similar” to the topology of the feature space,
we match the candidate with all donors who are “more similar than
dissimilar” as determined by a likelihood ratio-based methodology.

In order to obtain a baseline for how close two clients with similar
add-on preferences tend to be in terms of their Telemetry features,
we begin by grouping donors into distinct clusters based on their
installed add-ons. This is accomplished by applying a bisecting
K-means clustering algorithm [43] (a form of divisive clustering) to
the add-on portion of the client feature vectors. Donor clients be-
longing to the same cluster are thus deemed to have similar add-on
preferences, and conversely for clients in different clusters. Next,
we compute similarity scores in the Telemetry feature space be-
tween all pairs of clients in a sample of donors. We then pool scores
for pairs belonging to the same cluster and for those belonging to
different clusters, and represent the inter- and intra-cluster score
distributions using kernel density estimates as illustrated in Figure
2. This generalization of pairwise similarity computed for intra-
group and inter-group relationships allows us to specify a model
for deciding whether a candidate has add-on preferences coinciding
with or distinct from a given donor, given their similarity in the
non-add-on Telemetry feature space, using likelihood ratios.

We define similarity between two clients in terms of their Teleme-
try features using the following distance metric:

d(x ,y) = [c(x ,y) + ϕ] · h(x ′,y′),

where the h is the Hamming distance [38] between the categorical
portions x ′ and y′ of the client feature vectors:

h(x ′,y′) =
∑
j

|x ′j , y
′
j |;

c is the Canberra distance [38] computed between the continuous
features x and y for a client pair as:

c(x ,y) =
∑
j

|x j − yj |

|x j | + |yj |
;

and ϕ is a constant floor adjustment term applied to the continuous
portion of the feature vector to prevent 0 values. This use of the

ϕ parameter explicitly prioritizes similarity among the categorical
variables versus the continuous variables in the distance metric.

Given a candidate client requesting recommendations, we com-
pute the distance d between it and all donors, and recommend
add-ons pooled across donors which are more likely than not to
belong to the same cluster as the candidate. Representing this as a
general likelihood ratio (LR) model gives us a very natural quan-
tification of the chances that an add-on a donor has installed may
be interesting to a candidate client with a particular similarity to
that donor. Add-ons surfaced as recommendations from a particular
donor inherit the LR value determined from that donor’s similarity
with the candidate. Recommendations are then based on the sorted
list of add-on/LR pairs, sorted on LR. Additionally, add-on donors
are re-sampled weekly, ensuring fresh sampling of the add-ons
ecosystem, and allowing the possibility of new pattern discovery
and the inclusion of new add-ons in the recommendation pool.

Under our model, donors which are most similar to the candidate
in terms of d have a higher likelihood of their add-ons surfaced as
recommendations, thereby ensuring their relevance. However, our
method has two important advantages over a standard clustering or
nearest neighbors approach. We have avoided the issue of selecting
a threshold for donors being “similar enough”, instead learning an
appropriate criterion from the data itself. Also, we have provided for
enhanced diversity by fuzzy-matching candidates with the donor
clusters: rather than getting assigned to a single one of our add-
on clusters, a candidate is matched with all donors which could
conceivably belong to the same cluster as the candidate, regardless
of which clusters the donors themselves belong to.

2.3 Locale-based Recommender
A number of add-ons offer functionality specific to the user’s lin-
guistic locale, [17, 18] such as local service interaction or language
assistance. It is thus no surprise that, in the feature-selection phase
of our analysis, we found browser locale to be a highly effective
predictor of add-on preference. Additionally, locale is a property
determined on browser installation rather than by user interaction,
meaning that a locale-based recommender allows us to surface
relevant recommendations even for users with limited Telemetry
usage information.

To compute recommendations, the TAAR Locale recommender
generates a table of add-on installation frequency counts by lo-
cale. The counts are converted to relative frequency weights, and
recommendations are selected as the add-ons with the top K high-
est weights. Since a number of locales and add-ons have very few
installs, publishing top-K lists may pose a risk to the privacy of
users with rare locale/add-on combinations. To mitigate such risks,
we compute the initial frequency counts in a differentially private
[9, 10] manner.

Downstream computation of recommendations will then inherit
the privacy guarantees, provided it does not rely on private data
beyond the protected frequency counts. The Laplace Mechanism [9]
is an established method for releasing a table of frequency counts
while preserving ϵ-differential privacy. We adapt this technique
to generate add-on installation frequency tables for each locale
according to the following procedure:



• Limit each client to contributingm of their whitelisted in-
stalled add-ons to the frequency counts

• Using the limited data, compute the frequency counts for
each add-on in each locale

• Generate noisy counts by locale for each add-on in the
whitelist by adding independent Laplace(m/ϵ)-distributed
noise to the raw counts

• Report the add-ons per locale together with their noisy fre-
quency counts

In the Laplace mechanism, the amount of noise required to achieve
a given privacy guarantee depends on the amount by which a
single user can influence the outcome of the query. The threshold
m determines the tradeoff between bias and variance in generating
the privacy-preserving counts, and can be tuned to optimize their
accuracy. As most users tend to have few add-ons installed, this
is in fact achieved using the stringent limit of only 1 randomly
selected reported add-on per client.

Note that the use of the whitelist, as described in Section 2, is
central to our use of the Laplace mechanism for this problem. While
clients’ add-ons are restricted to those in the whitelist on the one
hand, we report noisy counts for every whitelisted add-on on the
other, even those which no client had installed. Since the whitelist is
determined in advance, independently of the per-locale frequency
counts, we avoid the additional privacy cost of discovering the list
of frequently installed add-ons itself from the private data.

This process yields a simple data structure of recommendations
per locale sorted by their weights, which are computed from the
privacy-preserving frequency counts:

{'zh-CN': [('guid_01', 0.75),...,('guid_02', 0.05)],
'fr-FR': [('guid_03', 0.24),...,('guid_04', 0.01)],
...,
'en-US': [('guid_04', 0.18),...,(guid_05', 0.02)]}

One implication of generating the recommendations based on the
noisy counts is that the system may recommend add-ons which
were not actually installed by any client in the corresponding locale.
However, the weights for such add-ons will either by dwarfed by
those of the most frequent ones, or will be approximately uniformly
distributed if no add-ons occurred particularly frequently in the
locale (or if the locale has very few users). Thus, such recommenda-
tions will be effectively muted by the subsequent ensemble module.
In this manner, we provide a carefully calculated balance between
utility and privacy, even for locales with few clients.

2.4 Ensemble Recommender
The ensemble method proposed herein is an implementation of a
hybrid sort. Unlike a conventional Linear Stacking [47] wherein
individual base models operate over a common feature space but
yield different recommendations depending on the statistical char-
acteristics of the models, our base models leverage different subsets
of the available Telemetry fields. For example, the add-ons-based
recommender described in Section 2.1 is included as a base model,
but it is only applicable to a particular subset of the feature space:
it may only contribute recommendations when the candidate client
has other add-ons installed.

Ensemblemethods typically optimize their relativemodel weights
based on an objective function such as MAP (Mean Average Preci-
sion) [23] for comparable ranked retrieval problems [21, 41, 47] or
RMSE (Root mean square error) [7]. This is usually measured over
a ground-truth set of known (client, recommendation) tuples. How-
ever, this approach is hindered in our setting by the fact that the
distribution of overall add-on installation rates is severely skewed
on one hand (popular add-ons are installed much more frequently
that niche ones), and the fact that clients typically install very few
add-ons on the other. Indeed, both MAP and RMSE metrics lead to
poor convergence and substantial bias towards the most popular
add-ons. In order to achieve generalizable ensemble weights, we
instead establish a novel metric centered on the confidence weight of
a recommendation, which are returned alongside recommendations
by each of our base recommenders.

The log likelihood ratio cost (cLLR) is a metric developed for
calibrating likelihood ratio curves [3] which captures the gradient
of a set of likelihood ratios derived from test data. It is defined as

CLLR =
1
2


1
NC

NC∑
i=1

log2

(
1 +

1
WC
i

)
+

1
NE

NE∑
j=1

log2

(
1 +W E

j

) ,
where NC is the number of correct recommendations provided by a
component model in the top k ranked recommendations andWC

i is
the confidence weight attached to the i-th correct recommendation
produced. Likewise, NE andW E

j are the number and confidence
weights of erroneous recommendations among the top k surfaced
recommendations.

Substituting the normalized confidence weights generated by
each of the component models for true likelihood ratios enables
the evaluation of a set of recommendations in terms of quality
by the cLLR metric, such that a low cLLR indicates a good rec-
ommendation set, while a higher cLLR indicates a high cost for
error. When ranked recommendation confidence weights are set to
equal 1.0, the cLLR score correlates to the precision. However, when
weighted recommendations are available, the cLLR penalizes scores
which provide strong support for incorrect recommendations and
minimizes the penalty when low confidence recommendations are
erroneously surfaced. In this way, additional information pertain-
ing to recommendation confidence is leveraged when compared to
ranking quality metrics [20]. Using the cLLR as the penalty function,
we determine a set of optimal model ensemble weights over the base
models using scikit-learn’s grid-search implementation [38] pass-
ing the cLLR as a custom performance metric. Manual observation
of intermediate recommendation results show satisfactory recom-
mendation performance when high confidence and low popularity
add-ons are included in the top k ranked recommendations.

2.5 Implementation
Each of the three recommender models are precomputed using
Apache Spark, and stored in JSON format in Amazon S3. They
are updated on a weekly basis to incorporate the latest Firefox
client Telemetry data. As these data models do not require low
latency access, they are simply loaded and stored in their entirety
in memory at process start up. All of the Telemetry data required
for generating recommendations for a candidate client is housed in
Amazon DynamoDB, indexed by client ID. This datastore is updated



Figure 3: The “Get Add-ons” section of about:addons

on a daily basis so that TAAR has at most 24 hour old data to use
for add-on recommendation.

The recommendations themselves are surfaced in “Get Add-ons”
section of the Firefox built-in about:addons page. When a user
navigates to this page, the front-end sends a message to the TAAR
server with the user’s client ID. The ID is used to retrieve the client’s
Telemetry from DynamoDB, which is then passed as input to the
recommendation service. The server responds to the front-end with
a list of 10 recommendations identified by add-on ID, and these
results are finally rendered in a user-friendly way within the “Get
Add-ons” page. Since Telemetry data for all users is already present
on Mozilla’s servers, the only piece of information transmitted
to the TAAR service is a hashed client ID, reducing latency and
supporting Mozilla’s lean data policies.

3 EVALUATION
In this section we present the results from the most recent experi-
ment we deployed, designed to highlight the role that TAAR plays in
the add-on discovery experience. Past experiments we have run us-
ing similar designs demonstrated positive results. Most notably, we
conducted a preliminary study to assess the performance attained
when information coming from non-add-on Telemetry features
was used, via the ensemble method, to refine recommendations
provided by a collaborative filter method. The ensemble branch
showed a 0.8% increase in users’ overall add-on installation proba-
bility, and a 1.2% increase for non-en-US users, thus informing our
decision to move forward with the current design.

The experiment we discuss here best reflects the “production-
ready” implementation of TAAR. A key distinction from past ex-
periments is the limited pool of 171 possible add-ons TAAR can
recommend to the user due to the use of the whitelist, which we
discuss further in Section 3.2.

3.1 Shield
The TAAR experiment described below was implemented and dis-
tributed using Mozilla’s Shield service. Shield [28] is an internal
user testing platform that allows for the evaluation of new features

through statistical randomized experiments, referred to internally
as Shield Studies [29]. Common applications of Shield Studies in-
clude changing preferences, displaying messaging or distributing
surveys. Firefox ships with a system add-on, the shield-recipe-client,
which receives instructions from the Shield server [31] and loads a
study if the client meets the study-specific targeting criteria. Shield
allows for opt-in and opt-out studies, depending on the type of data
collection involved [30].

3.2 Experiment Design
We tested the efficacy of TAAR on real users using an opt-out Shield
Study. The study is limited to new users, to focus on those who
are less likely to have preconceptions of add-ons, and to better
understand a user’s entry into the add-ons ecosystem. We consider
a new user to be one whose profile was created between 21 and 2
days before the study enrollment date.

The study follows a between-subjects design with 3 cohorts.
Upon navigating to the about:addons page, we show users a cohort-
dependent list of 4 add-ons generated by the following processes:

• control: Manually curated list of add-ons based on a user’s
locale, browser version, and other high-level browser charac-
teristics. This is the standard, non-experimental experience.

• ensemble: Weighted combination of all eligible models, as
described in Section 2.4. Each of the 4 displayed add-ons is a
recommendation from the TAAR service.

• hybrid: Identical to the ensemble cohort, with C curated add-
ons interleaved among the recommended add-ons. Here,
C ∈ {1, 2, 3, 4} and is selected uniformly at random. This
is an attempt to simulate add-on promotional campaigns,
which is common practice for the about:addons page. (The
ensemble cohort has C = 0.)

Each user in the study is randomly assigned to one of the three
possible cohorts with probabilities of 0.25, 0.25 and 0.5 for the con-
trol, ensemble and hybrid branches, respectively. The hybrid branch
has a higher sampling weight to allow for sufficient quantities of
each observable value for C . We do not include analysis for values
of C in this paper, but rather focus on comparing the ensemble
cohort to the control and hybrid cohorts.

The about:addons URL is stored as a browser preference and is
referenced each time the page is requested. We changed this URL
for users in the hybrid and ensemble branches to direct requests to
the TAAR service, inserting personalized recommendations into
the relevant page elements highlighted in Figure 3. When a user
with the altered URL requests the about:addons page, TAAR gener-
ates and serves recommendations that are rendered to the user in
approximately 70 milliseconds.

We localized all add-on content for 11 different locales to better
understand TAAR’s performance in different regions and contexts,
which required us to limit the pool of available recommendations
to a whitelist of 171 add-ons. Since the standard about:addons page
has localized content, it is imperative that the treatment pages do
as well, in order to keep the user experience uniform across cohorts.
While the whitelist reduced the cost of the localization tasks by
design, it also provided security assurances, since each add-on in
the list was hand-picked and verifiably non-malicious.



Figure 4: Popup in English

Table 1: Number ofUniqueUsers perCohort afterValidation

Cohort (c) Unique Users (nc )
control 152, 554
ensemble 101, 734
hybrid 203, 585
Total 356, 365

To augment traffic to the about:addons page, and to ensure more
of the study sample is exposed to one of the page variants, we
displayed the popup shown in Figure 4, linking to the about:addons
page through the “Browse Add-ons” button. Once entered into the
study, users saw this messaging after three successful page loads.
A user can, of course, navigate to this page organically by typing
“about:addons” in the address bar, or by clicking the Add-ons button
from the browser menu.

3.2.1 Cohort Validation. Due to the nature of the experiment de-
sign, we must restrict our study sample to users who navigated
to the about:addons page at least once; otherwise the user was
never exposed to the treatment or the control. Additionally, we
must verify that users in the hybrid and ensemble branches were
successfully served TAAR recommendations, since in the case of
failure they are served the standard (control) about:addons page to
avoid user experience breakages. We accounted for this by extract-
ing the list of users that are present in the TAAR application logs
and associated with a successful recommendation entry from either
the hybrid or ensemble model, and dropping users from the study
that ever experienced a failure (as they would have seen both the
treatment and the control). Table 1 shows the resulting cohort sizes
for each cohort c , after imposing these restrictions on our study
sample, denoted by nc . Note that the initial sampling weight struc-
ture (0.25/0.25/0.5) is not preserved due to the additional filtering
criteria for the cohorts exposed to TAAR, although the hybrid and
ensemble cohorts approximately keep their intended 2:1 (0.5/0.25)
ratio.

3.3 Results
We compare the estimated probability of installing an add-on π̂c
for each cohort c , across the three cohorts, where π̂c = ac/nc , ac
being the number of users in cohort c that installed an add-on from
the about:add-ons page. The recommendation page seen in Figure 3
displays precisely 4 recommendations per visit. We favour the rank-
agnostic performance metric π̂c as it directly measures the success
of this recommender system in a realistic production context where
all recommendations are given prominent visibility.

Table 2: π̂c by Cohort

Cohort (c) π̂c
control 0.0829
hybrid 0.1141
ensemble 0.1266

Table 3: Proportion Test Results for π̂c with 95% Confidence
Intervals

Comparison (c) ∆c CI low CI high p-value
control 0.0438 0.0413 0.0462 ≈ 0
hybrid 0.0125 0.01 0.015 ≈ 0

Figure 5: π̂c by Cohort and Locale with 95% Confidence In-
tervals

Since π̂c ∈ [0, 1], we ran a two-sided proportion test comparing
π̂c for the ensemble cohort against the hybrid and control cohorts,
where ∆c = π̂ensemble − π̂c and represents the expected change in
add-on installation probability for the ensemble cohort compared
to cohort c . When considering π̂c , pairwise two-sided proportion
tests offer more interpretable and granular results than some of the
alternatives (i.e. a Chi-Square Test for Independence).

We observe a positive effect that is statistically different from
0 for the ensemble cohort compared to the other two cohorts as
seen in Table 3, implying that the ensemble model is surfacing
more relevant add-ons than the hybrid model and the standard
curated list. Additionally, we compare the same effects restricted to
users with an en-US locale, and users with non-en-US locales. Users
with an en-US locale make up 45% of our study sample. Figure 5
demonstrates that the positive effects we observe are greater in
magnitude for users in non-en-US locales. The corresponding val-
ues for ∆control are 5.1% for non-en-US and 3.5% for en-US. Figure
6 further breaks down π̂c by individual locales, restricting ac and
nc to the subset of users in the relevant locale.

The ensemble cohort has a statistically significant, positive effect
over the control cohort in 91% of locales, and a positive effect over
both the control and hybrid cohorts in 45% of locales. We observed
only one null effect over the control for the Japanese locale (ja),
while Russian (ru) and German (de) locales notably stand out with



Figure 6: π̂c by Cohort and Locale with 95% Confidence In-
tervals

∆c values of 6.3% and 8.4% respectively. These summary stats,
coupled with Figure 6, demonstrate the performance consistency
of TAAR across different languages and regions.

4 DISCUSSION
The Telemetry-based model described in Section 2.2 entails an addi-
tional set of weakly held assumptions regarding the use of unlabeled
data at the stage of divisive clustering. Unsupervised clustering of
a set of clients based exclusively on add-on installations is expected
to ensure diversity sampling in terms of the add-ons represented.
This approach does not address client characteristic biases present
in the non-add-on portion of the client feature vectors. Furthermore,
the use of cluster membership labels as a surrogate for client simi-
larity in the Telemetry space implies an independence between the
Telemetry features space and the particular set of add-ons installed
per client on the one hand, while the later generalization of intra-
and extra-cluster similarity across these assumes that a dependence
exists on the other.

Finally, it is worth discussing the effects of widespread use of
recommender systems in terms of the ecosystem diversity. An in-
crease in the installation rates of recommended add-ons may in
turn lead to a higher likelihood of the recommendation of those
same add-ons. These polarizing effects may be further exacerbated
by a situation where variable information is available for candidate
recommendation items [15]. This necessitates that particular atten-
tion is placed on ensuring diversity sampling to ensure that new
add-ons are promoted in the ecosystem.

4.1 Future Work
Prior to the experimental launch of the recommendation system
described here, a curated list of add-ons was surfaced on each visit

to the Firefox about:addons page. As such, interaction informa-
tion pertaining to add-on installation events and add-on discovery
was unavailable. Future versions of this system may now draw on
anonymous interaction data available from the application logs as a
more realistic ground truth for tuning ensemble weight parameters.
Actual individual add-on recommendation and installation/non-
installation event data shall be substituted for the surrogate ap-
proach described in Section 2.

The ensemble approach may be further refined by the additional
parametrization of weights applied to the individual features. The
evaluation of a feature-weighted stacked ensemble [47] may be of
interest to further refine recommendation quality. Optimizing on
feature weights at the level of recommendation model contribution
may also allow a meta analysis of feature utility. This has the po-
tential to further reduce the number features required to provide a
personalized experience.

The results described herein demonstrate a proof-of-concept
implementation, deployed over a subset of the Firefox population.
In order to achieve stable and long-term production deployment,
additional infrastructure is needed to ensure stability and security
while rigorously safeguarding user privacy [4, 57].

5 CONCLUSIONS
A recommender system is developed and demonstrated (operating
at scale) to yield high value add-on recommendations to users of the
Mozilla Firefox web browser. Only existing data sources are used,
in alignment with a lean data collection policy, and no personally
identifying information is needed to provide recommendations.

The weighted ensemble of component models is demonstrated
to provide recommendations better than a curated list, even in cases
where clients have opted to limit the information they choose to
share with Mozilla via browser Telemetry preferences.

The results of a randomized controlled trial show a significant
improvement in the probability of add-on installation in both en-US
localized populations and non-English localized browsers. In both
cases, the ensemble method outperforms both control conditions,
a partially- and fully- curated list of feature add-ons, which is the
current Firefox add-ons discovery experience.
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