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ABSTRACT
Large-scale Web crawls have emerged as the state of the art for
studying characteristics of the Web. In particular, they are a core
tool for online tracking research. Web crawling is an attractive
approach to data collection, as crawls can be run at relatively low
infrastructure cost and don’t require handling sensitive user data
such as browsing histories. However, the biases introduced by us-
ing crawls as a proxy for human browsing data have not been well
studied. Crawls may fail to capture the diversity of user environ-
ments, and the snapshot view of the Web presented by one-time
crawls does not reflect its constantly evolving nature, which hinders
reproducibility of crawl-based studies. In this paper, we quantify
the repeatability and representativeness of Web crawls in terms
of common tracking and fingerprinting metrics, considering both
variation across crawls and divergence from human browser usage.
We quantify baseline variation of simultaneous crawls, then isolate
the effects of time, cloud IP address vs. residential, and operating
system. This provides a foundation to assess the agreement be-
tween crawls visiting a standard list of high-traffic websites and
actual browsing behaviour measured from an opt-in sample of over
50,000 users of the Firefox Web browser. Our analysis reveals dif-
ferences between the treatment of stateless crawling infrastructure
and generally stateful human browsing, showing, for example, that
crawlers tend to experience higher rates of third-party activity than
human browser users on loading pages from the same domains.
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1 INTRODUCTION
The nature, structure, and influence of the Web have been subject
to an overwhelming body of research. However, its rapid rate of
evolution and sheer magnitude have outpaced even the most ad-
vanced tools used in its study [25, 44]. The expansive scale of the
modern Web has necessitated increasingly sophisticated strategies
for its traversal [6, 10]. Currently, computationally viable crawls
are generally based on representative sampling of the portion of
the Web most seen by human traffic [23, 47] as indicated by top-site
lists such as Alexa [4] or Tranco [27].

Web crawls are used in a wide variety of research including fun-
damental research on the nature of the Web [32], training language
models [21], social network analysis [33], and medical research
[60]. In particular, they are a core tool in privacy research, having
been used in numerous studies (see Section 2.2) describing and
quantifying online tracking. However, little is known about the
representativeness of such crawls compared to the experience of
human users browsing the Web, nor about how much they de-
pend on the environment from which they are run. In order to
contextualize the information obtained fromWeb crawls, this study
evaluates the efficacy, reliability, and generalisability of the use of
Web crawlers [25] as a surrogate for user interaction with the Web
in the context of online tracking. The main contributions of this
paper are:

• A systematic exploration of the sources of variation between
repeated Web crawls under controlled conditions

• Quantification of the variation attributable to the dynamic
nature of the Web versus that resulting from client-specific
environment and contextual factors
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• An assessment of the degree to which website ranking lists,
often used to define crawl strategies, are representative of
Web traffic measured over a set of real Web browsing clients

• A large-scale comparison between Web crawls and the expe-
rience of human browser users over a dataset of 30 million
site visits across 50,000 users.

These results present a multifaceted investigation towards answer-
ing the question: when a crawler visits a specific page, is it served
a comparable Web experience to that of a human user performing
an analogous navigation?

2 BACKGROUND AND MOTIVATIONS
Seminal research into the graph-theoretical characteristics of the
Web simplified its representation by assuming static relationships
(edges) between static pages (nodes). Increasingly sophisticated
Web crawlers [25] were deployed to traverse hyperlinkage struc-
tures, providing insights into its geometric characteristics [9]. Subse-
quent research has emphasized the importance of studying Internet
topology [18, 31, 54]. Models accounting for the dynamic nature
of the Web, and morphological consequences thereof [31], have
encouraged emphasis on higher traffic websites in the context of an
increasingly nonuniform and ever-growing Web. Applied research
into specific characteristics of the Web [5], including the study of
the tracking ecosystem that underlies online advertising [17, 50],
have leveraged Web crawlers to study an immense and diverse
ecosystem of Web pages.

Indeed, much of our understanding of how the Web works, and
the privacy risks associated with it, result from research based on
large-scale crawls. Yet, most crawls are performed only once, pro-
viding a snapshot view of the Web’s inner workings. Moreover,
crawls are most often performed using dedicated frameworks or
specialized browsers implementations, differing significantly from
the commodity browsing experience. Representativeness, repeata-
bility, and variability are critical in such research, particularly in
the study of tracking technologies, browser fingerprinting, or any
number of security and privacy issues specific to the experience of
human users. However, these issues have not been well studied in
the context of large-scale crawl-based studies.

In this section we will define Web crawlers and provide an
overview of the underlying technologies. We also look at some
of the large-scale studies that rely on crawling, compare them to
other sources of data, and conclude by discussing the issues that
may introduce bias into crawls.

2.1 Crawl technology
A crawler is an automated client application that browses websites
to collect data from them. The most well-known crawlers tend to be
those used by search engines to index sites so as to make them easier
to find. Other crawlers are used to gain a competitive advantage
or to copy and republish data on third-party websites. Moreover,
many Web measurement studies carried out by researchers rely on
crawlers.
A crawl is the action of using a crawler to collect data fromwebsites.
Some crawls explore a single website, while in the case of large-
scale studies, a single crawl may consist of millions of pages across
several websites. The legal issues around crawling vary depending

on the objectives of the crawl and are an active area of discussion
[7, 48]. These are, however, outside the scope of this paper.

There are a multitude of crawler implementations that use differ-
ent technologies with different tradeoffs. Simple crawlers are fast
but do not run JavaScript, a central component of the modern Web
environment. Other crawlers require more resources but are better
at simulating a user’s browser. The simplest forms of crawlers are
scripts that use curl or wget to get a webpage’s contents. More com-
plete crawlers rely on frameworks like Scrapy [51], a Python-based
framework for crawling and scraping data. Selenium [11] goes a
step further by providing plugins to automate popular browsers, in-
cluding Firefox, Chrome, Opera and Safari. Its popularity has led to
the W3CWebdriver Standard [12]. In fact, Firefox and Chrome now
provide headless modes that allow them to be run fully-automated
from the command-line, without the need for a graphical interface.
Libraries such as Puppeteer [20] provide convenient APIs to con-
trol browsers. Finally, OpenWPM [17] is a privacy measurement
framework built on Firefox that uses Selenium for automation and
provides hooks for data collection to facilitate large-scale studies.

There are important considerations when choosing a crawler
technology. Simple crawlers that do not run JavaScript and are
quite limited in modern dynamic environments. A stateful crawler,
i.e., one that supports cookies, caches or other persistent data, may
be desirable to better emulate users, but the results of the crawl
may then depend on the accumulated state, e.g., the order of pages
visisted. Finally, a distributed crawl may exploit the use of coordi-
nated crawlers over multiple boxes with distinct IP addresses.

2.2 Web measurement studies
Crawls are a standard way of collecting data for Web measure-
ments. Many crawl-based studies focus on security and privacy
issues, such as online tracking [2, 17], detecting the use of browser
fingerprinting [3, 26, 40], detecting the use of sensitive APIs [13],
the tracking ecosystem of internet-enabled devices [34], dark pat-
terns on shopping websites [28], content security violations [55],
the effectiveness of tracker blockers [30], GDPR compliance [8],
and many others [43, 57]. The OpenWPM framework has been used
in over 47 such crawl-based studies [59]. While bias is often ac-
knowledged in such studies, we are not aware of an exploration of
how representative crawls are compared to users’ experiences, how
susceptible they can be to variability across IP addresses, regions,
time, or how platforms or technologies may influence it.

Of course, crawls are not the only way to perform Web measure-
ment studies. Other works have built datasets based on proxy inter-
ceptions [22, 24, 45], instrumented networks and VPNs [24, 45, 53].
Papadopoulos et al. use a dataset collected over 1 year from 850
participants and explicitly state they are not affected by distor-
tions that exist in crawled data [45]. Another approach is to collect
data through websites that provide information and feedback to
users to entice them to participate [16, 26, 42], as well as apps and
browser extensions [46, 61, 62]. Crowd-sourcing services can also
be used to pay users to perform specific actions [29]. Yet, all of
these approaches have their own biases and can lead to a lack of
representativeness. Paying users introduces selection bias, as well
as the possibility that user behavior is different when users know
they are being monitored. Sites like AmIUnique [41] or Panopticlick

2



The Representativeness of Automated Web Crawls as a Surrogate for Human Browsing WWW ’20, April 20–24, 2020, Taipei, Taiwan

[16] have biased audiences that are already interested in the privacy
issues they address, and are generally more technically proficient.

2.3 Bias and variability in Web crawls
There is plenty of anecdotal evidence describing issues surrounding
Web crawls and scraping, as well as strategies to avoid detection
[1, 56]. Specific robot detection strategies have been published
which consider both the crawler’s behavior (e.g., number of pages
loaded) and originating IP address [15]. However, there is little
information regarding the representativeness of crawls compared
to human users’ experiences, and on the variability that can be
expected between simultaneous crawls, the variability of crawls
over time, and the reproducibility of crawl-based research.

The technical articles written to improve crawlers or to avoid
detection hint at some of the issues that can introduce variability
or lack of representativeness e.g. [1]. These may include IP address
reputation, including the use of cloud VMs, residential or business
IP addresses, as well as the crawl technology, the browser and
underlying platform, the region, the crawl’s statefulness, and others.
In this paper we provide a systematic exploration of the sources of
variation between Web crawls and attempt to control the variation
to as few factors as feasible. We also study the representativeness
of crawls in regards to the experience of users on the Web.

3 METHODOLOGY
We approached our study of Web crawls by first analysing sets of
repeated crawls under variable conditions, assessing the extent of
crawl-to-crawl variation. Those findings then informed a systematic
examination of the divergences observed between a large-scaleWeb
crawl and browsing data obtained from actual Web users over the
same time period. The source code and configuration for all our
measurements and analysis is available publicly [39].

3.1 Measurement
All the Web measurements used in our analyses, from both crawl
and user data, were collected using OpenWPM [17]. We captured
webNavigations [58] (henceforth referred to as “navigations”), HTTP
requests/responses/redirects, and JavaScript calls, the latter being
limited to certain fingerprinting-related attributes and methods of
the browser API. To collect data from live user browsing sessions,
we integrated the OpenWPM instrumentation into a Firefox Web-
Extension and deployed it to an opt-in user population (further
described in Section 3.4). Due to the verbose nature of the Open-
WPM instrumentation and the scale of the data capture cohort, we
group HTTP and JavaScript payloads by navigations and restrict
data capture within each navigation group to 500 KiB1, a 10-second
cutoff or 1,000 events (whichever limit was hit first).

Additionally, to reduce known sources of bias between Open-
WPM running as part of a WebExtension and crawlers run on
different platforms, we contributed three significant enhancements
to OpenWPM not available in previous studies:

• Instrumentation of the webNavigation API, which al-
lows comparing crawl and user page loads consistently.

1Size limit applies to the encrypted combined payload that includes all of a specific
navigation’s HTTP and JavaScript payloads.

• Support for Firefox Quantum (Firefox versions 57 and
up), enabling data collection on recent Firefox versions,
which account for a majority of users.2

• Alternative orchestration: The default OpenWPM orches-
tration tools (crawl setup, execution, data aggregation, etc.)
currently support OSX and Linux. We built new orchestra-
tion tooling enabling crawls to be performed in a unified
manner across Windows, OSX, and Linux.3

3.2 Definitions and metrics
We preprocess all URLs in our datasets by stemming, i.e., stripping
all but their hostname and path components; this makes dedupli-
cation of URLs more meaningful. For example, stemming the URL
https://x.y.com/path/a.html?a=1&b=2 gives x.y.com/path/a.html.
Henceforth, URL refers to its stemmed version. We use the term
domain as a shorthand for eTLD+1, the effective top-level domain
plus one subdomain, sometimes known as the pay-level domain.
For example, x.y.com and z.y.com share the same domain y.com.

A site visit refers to the notion of a user intentionally visiting
a website, for example by clicking on a link, and encapsulates all
related events such as requesting resources from other URLs and
executing scripts. In the case of a crawl, this is the outcome of
pointing the crawler to a specific URL. It is more tricky to determine
top-level site visits in OpenWPM data collected from live user
browsing; the approach we use is outlined in Section 3.5. Note that
site visits are distinct from navigations, since separate navigation
events are triggered for each frame. Typically, a site visit entails
multiple navigations.

Finally, we say a resource is loaded from a third-party domain
if the request domain is different from the domain of the site visit.
Note that this can result in domains that are owned by the same
entity being marked as third-party, such as a site visit to amazon.
com loading images from ssl-images-amazon.com. Nevertheless,
this is a common assumption in Web measurement literature [17,
50] and is contextualized by our additional tracking metrics.

With our focus on tracking and fingerprinting in mind, we use
the following metrics for analysis. For each metric, we summarize
events per site visit using aggregate counts, and compare sets of
events between two site visits using Jaccard similarity, which offers
a view into the evolution of third-party content on a per-site basis.

Third-party resources. We measure the prevalence of third-
party content by counting the number of unique third-party do-
mains or URLs across all HTTP requests generated by a site visit.
We also consider the Jaccard similarity between sets of unique
third-party domains or URLs loaded across two site visits.

Tracking resources. A third-party resource is considered to be
“tracking” if its domain is on the Disconnect [14] list. We study the
number of unique tracking domains for a site visit, as well as the
Jaccard similarity between sets of unique tracking domains across
two site visits.

Fingerprinting. We identify audio, Canvas, font, and WebRTC
fingerprinting by Javascript scripts using published heuristics [13,

2The original OpenWPM was instrumented using Firefox APIs that were deprecated
in the Quantum release of Firefox. All instrumentation was ported to work with the
WebExtensions API.
3When alternative orchestration was used to run an experiment it has been noted.
Otherwise default orchestration was used.
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17]. We count the number of unique domains or URLs of scripts
engaging in fingerprinting, as well as the Jaccard similarity between
sets of unique fingerprinting script domains or URLs discovered
globally across two crawl datasets.

Note that, for most of the analysis, we aggregate across all site
visits under the same domain, in order make comparisons on the
basis of site domains. This means that visits to subdomains of the
same site will be grouped together.

3.3 Crawl-to-crawl comparisons
To quantify the natural variability inherent in the crawls themselves,
we conducted a variety of experiments running multiple crawls
with, as much as possible, all but one condition held constant. All
of the crawls described in this section used the AlexaTop1k [4] as
their seed list and were performed between July and October 2019.
A page dwell time of 10 seconds was chosen to capture a majority
of page load events for a majority of pages based on observations
from comparable studies [19, 49], which we validated in our own
preliminary exploration.

3.3.1 Baseline variation. We first investigated the variability ob-
served under identical conditions: when the same crawler in the
same operating system at the same IP address goes to the same
website at approximately the same time. OpenWPM was run on a
single Google cloud server, with 16 crawlers each simultaneously
running a single instance of the Firefox 69 browser. We performed
this for both the default and alternative orchestration versions of
OpenWPM so that we could establish baselines for subsequent
measurements depending on the technology configuration used. In
both cases, one instance failed due to technical failure, resulting in
successful data being collected from 15 simultaneous crawls.

3.3.2 Effect of time. 44 crawls using Firefox 68 were performed,
with a variable cadence, over 54 days, using a single OSX machine
located at a residential IP address in Brazil. Of these, 5 crawls failed
to complete, leaving 39 crawls for analysis. The crawls were not
run in headless mode, i.e., a normal browser window was opened
for each crawled site.

3.3.3 Cloud vs. residential IP address. Crawls were run simulta-
neously on Linux at a residential IP address in Texas, USA and
on a Google cloud server. Firefox 69 was used and was run on
the in-memory display server Xvfb, a common tool for running
browsers in servers for testing or crawling. Xvfb was also used for
the residential IP address to limit variability in this experiment to
IP address. Crawls were initiated simultaneously at both the cloud
and residential locations. This procedure was repeated 4 times. The
crawlers were configured to run with 3 parallel browser sessions
running—that is, 3 browsers shared the crawl list and ran 1/3 each.
These crawls used our alternative orchestration tooling.

3.3.4 Effect of operating system. Simultaneous crawls ran on Linux,
OSX, and Windows at a single residential IP address in Texas, USA
using Firefox 69. As in Section 3.3.3, each crawler ran 3 parallel
browser sessions, and the procedure was repeated 4 times. The
Linux crawl was run using Xvfb while OSX and Windows crawls
were run with normal platform display (browser windows opening

for each visited site). Using Linux-on-Xvfb in this experiment al-
lows us to compare the cloud environment to user environments
while controlling for variation that may be introduced by cloud vs
residential IP address. These crawls were run using our alternative
orchestration tooling.

3.4 Human-to-crawl comparisons
In order to quantify the representativeness of crawls in relation to
the browsing experience of real human users, we collected contem-
poraneous datasets from both sources.

3.4.1 Human data collection. User traffic data was recorded using
a WebExtension that bundled the OpenWPM instrumentation [36].
It was deployed to users of the Firefox browser who had opted in
to participate in studies collecting data falling outside Mozilla’s
default data collection policies [37]. Approximately 52,000 users
participated, all of whomwere using Firefox versions 67 or 68 in the
en-US localization at the time of data collection. We note here that
due to the extremely sensitive nature of this dataset it is not feasible
to publish it in its entirety with the rest of our data and analyses
and therefore only selected analysis code and data summaries are
available publicly [39].

The WebExtension collected user data over an initial period of
7 days, then paused data collection for 7 days, then resumed data
collection for a second 7-day period, after which it uninstalled itself.
These collection periods lasted for 7 calendar days, regardless of
whether the user was active in the browser. A two-period collec-
tion scheme was employed to provide a compromise between data
collection over a longer time period, which facilitates the study of
longitudinal changes, and practical considerations regarding the
volume of data collected and operational costs. The final dataset
covers browsing which occurred between July 16 and August 13,
2019, and contains 30 million site visits covering 640,000 unique
domains.

Note that our dataset was limited to an existing pool of opt-
in users, all of whom had been part of this cohort for at least six
months. Hence, while these users were not recruited into the cohort
specifically for this study, they are likely not representative of
general browser users across all dimensions. Nonetheless, our data
provides a good approximation of general user behavior in terms of
the particular metrics we elected to study, and aligns with previous
work outlined in Section 2.2.

3.4.2 Companion crawl. As a basis for comparison, we launched
a companion crawl on July 31, 2019. The crawl ran from Google
cloud infrastructure and employed a page dwell time of 10 seconds.
Obtaining crawl data that is comparable to real user browsing
requires a judicious choice of the seed list of sites for the crawler
to visit to ensure sufficient overlap with user browsing behaviour.
Prior research has discussed the difficulty of appropriate website
sampling in the context of Web crawls [6, 10]. We approached this
problem by evaluating multiple top-site lists, and we settled on a
hybrid list methodology.

We compared three well-known top-site lists—Alexa [4], Tranco
[27], and Majestic Million [52]—and found them to differ substan-
tially; in other words, they represent complementary sets of web-
sites. The Jaccard similarity between Tranco and each of the other
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two over the top N ranks appears to converge to around 40% when
N is increased beyond 100. The Majestic and Alexa lists exhibit
more significant differences, with a similarity of around 20% over
the same ranks. We then compared each list against aggregated site
visits performed by actual users in a previously collected dataset
of navigation events truncated to the top-level domain. This anal-
ysis revealed that retaining the top 10,000 domains from any of
the individual lists attains an overlap of at least 40% with user site
visits.

Informed by these findings, we decided to create a hybrid list
combining entries across existing lists and including multiple Web
properties belonging to each top-level domain. This accounts for
the complementary nature of the standard lists, as well as the fact
that human user browsing is better described by a hierarchy of
pages across fewer top sites than by top-level home pages across
a longer list of domains. We created a base list by interleaving
the first 10,000 sites from each of the Alexa and Tranco top-site
lists, dropping duplicate entries (the Majestic list added negligible
additional information). The resulting list, which we call Trexa10KU,
contains 14,556 domains. We then ran a depth-N pre-crawl of the
Trexa10KU using a custom Scrapy [51] spider, recording at most 10
random visitable URLs linked from each main site. If fewer than 10
such links were encountered, a random link was followed and the
same procedure was repeated until at most 10 visitable URLs were
obtained. These URLs formed the final seed list, containing 108,207
entries. The main crawl, seeded with this list, resulted in 102,330
successfully visited URLs across 15,768 unique domains, of which
75% belong to the base Trexa10KU list.

3.5 Data preparation
Prior to the analysis, we performed some additional data processing
steps to address inconsistencies between the crawl data and that
collected from browser users. First, although the crawls were con-
figured to use a dwell time of 10 seconds per page, the crawlers are
implemented such that this is a lower bound, and may record well
over 10 seconds worth of data on some pages. For example, certain
pages appear to time out because the original GET request does not
return correctly, but the page does actually load and generate data.
In this case the crawler will have collected 60 seconds worth of
data (the timeout threshold). To make comparisons consistent, we
imposed a 10-second cutoff on all crawl datasets: for each site visit,
we retained only those events which occurred within 10 seconds of
the earliest recorded event.

The other major difference involves the notion of site visits.
In a crawl, a site visit is well-defined: a new browser instance
is spawned and navigates to a site. A “visit” then consists of all
subsequent events. In the case of human user traffic, events may
be interleaved across multiple concurrent site visits, and while the
current implementation does group events by navigations, it does
not associate navigation events with top-level intentional user site
visits (recall that a site visit may generate multiple navigations,
including frame loads which are considered separate navigations
by OpenWPM).

To resolve this, we applied the following heuristic to group navi-
gations into site visits. Within each browser session, window and
tab, we identified each navigation event that did not take place

in a frame (detected in the dataset as having a frame_id of 0)
as a separate site visit. We then associated all subsequent frame
navigation events prior to the next top-level navigation as be-
longing to the most recent site visit, with ordering given by the
before_navigate_event_ordinal (which provides a sequential
ordering of navigation events within each tab). Finally, we applied a
visit-level 10-second cutoff by dropping any navigation events that
occurred more than 10 seconds after the timestamp of the initial
site visit navigation. While this heuristic relies on the assumption
that each non-frame navigation represents a site visit, and ignores
visit-related events that occur in other tabs such as pop-ups, we
find it to be a reasonable compromise towards maximizing compa-
rability given the constraints of our data collection. Quantifying
the error this introduces would require significant further analysis
which we leave for future work.

4 RESULTS
4.1 Crawl-to-crawl comparisons
In this section we report the results of our crawl-to-crawl com-
parisons and explore sources of variability. We break the metrics
described in Section 3.2 into five sub-metrics: third-party domains,
third-party URLs, tracking domains, fingerprinting script domains,
and fingerprinting script URLs. For a top-level view into volume
of content, we compute counts of each of these within each crawl
and site visit, and compare the per-site distributions across crawls.
To investigate changes in the content itself, we also compute the
Jaccard similarity between pairs of crawls for each site, and com-
pare the per-site distributions of Jaccard scores. We first establish a
baseline for variability using simultaneous crawls, and then explore
deviations relative to that baseline over three variables: time, IP
address, and operating system.

4.1.1 Number of resources loaded. We reviewed the distributions
of per-site resource counts and found very little variability between
crawls for any of the measurements. For each crawl performed,
we then computed the mean, median, and maximum values of
each crawl’s distribution over sites, and reported the average and
standard deviation of these values across crawls in Table 1.

Due to the low variability, we do not explore these distributions
of counts in further detail. We do, however, note the slightly higher
standard deviations reported for the mean count of third-party
URLs, third-party domains, and tracking domains in the case of
OSX. This can be attributed to one of the four OSX crawls, which
had a noticeably different distribution from the others. However,
the remaining three were highly comparable, so we do not believe
that OSX experiences systematically higher variability than other
platforms.

4.1.2 Simultaneous crawls. We review the baseline distributions
of Jaccard similarities across pairs of simultaneous crawls for each
metric of interest, e.g., the similarity of the two sets of third-party
domains loaded in visits to the same site between pairs of crawls.

In Figure 1 we plot the distributions over sites for third-party
URLs. Each plot contains 105 lines, 1 for each pair of crawls. The
tight, overlapping distributions show that the crawls exhibit re-
peatable, stable results while at the same time demonstrating the
dynamism of the Web: the same third-party URLs are loaded only
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Table 1: Distributional summaries of number of resources
loaded, averaged over indicated crawls (standard deviation
in parentheses). Distributions are per site, e.g., Windows
crawls reported a median of 8.8 tracking domains per site
on average with a standard deviation of 0.5. Corresponding
summaries over all crawls are reported in bold.

Mean Median Max

T
ra
ck

in
g

do
m
ai
ns

Baseline 15.9 (0.38) 8.0 (0.00) 91.0 (1.43)
Time Crawls 14.5 (0.32) 9.1 (0.27) 81.0 (4.31)
Linux (cloud) 16.0 (0.38) 8.0 (0.00) 91.3 (1.89)
Linux (local) 14.8 (0.76) 8.0 (0.00) 87.3 (8.77)
OSX 13.4 (1.49) 7.8 (0.50) 88.8 (6.85)
Windows 14.5 (0.76) 8.8 (0.50) 86.0 (5.48)

15.0 (0.89) 8.5 (0.59) 85.8 (6.10)

Fi
ng

er
pr

in
ti
ng

sc
ri
pt

do
m
ai
ns

Baseline 1.07 (0.01) 1.00 (0.00) 2.37 (0.49)
Time Crawls 1.05 (0.01) 1.00 (0.00) 2.00 (0.00)
Linux (cloud) 1.06 (0.01) 1.00 (0.00) 2.25 (0.50)
Linux (local) 1.07 (0.01) 1.00 (0.00) 2.75 (0.50)
OSX 1.05 (0.02) 1.00 (0.00) 2.25 (0.50)
Windows 1.07 (0.02) 1.00 (0.00) 2.50 (0.58)

1.06 (0.01) 1.00 (0.00) 2.21 (0.41)

Fi
ng

er
pr

in
ti
ng

sc
ri
pt

U
R
Ls

Baseline 1.40 (0.01) 1.00 (0.00) 4.53 (0.57)
Time Crawls 1.36 (0.02) 1.00 (0.00) 3.03 (0.16)
Linux (cloud) 1.38 (0.01) 1.00 (0.00) 4.25 (0.50)
Linux (local) 1.41 (0.01) 1.00 (0.00) 5.00 (0.00)
OSX 1.39 (0.02) 1.00 (0.00) 4.25 (0.50)
Windows 1.40 (0.02) 1.00 (0.00) 4.00 (0.00)

1.38 (0.02) 1.00 (0.00) 3.80 (0.84)

T
hi
rd
-p
ar
ty

do
m
ai
ns

Baseline 21.5 (0.38) 12.0 (0.09) 124.4 (4.26)
Time Crawls 19.8 (0.39) 13.1 (0.33) 113.5 (5.70)
Linux (cloud) 21.6 (0.46) 12.0 (0.00) 121.8 (2.22)
Linux (local) 20.1 (0.99) 11.5 (0.58) 118.8 (14.20)
OSX 18.6 (1.74) 11.5 (0.58) 125.8 (10.56)
Windows 20.1 (0.93) 12.5 (0.58) 117.5 (8.50)

20.5 (1.06) 12.5 (0.69) 118.7 (7.88)

T
hi
rd
-p
ar
ty

U
R
Ls

Baseline 88.5 (1.92) 58.5 (0.89) 603.1 (77.49)
Time Crawls 81.2 (1.77) 60.2 (1.08) 451.5 (29.27)
Linux (cloud) 88.6 (1.56) 60.0 (0.82) 603.3 (22.29)
Linux (local) 83.5 (3.63) 56.1 (2.17) 504.5 (56.39)
OSX 76.7 (6.61) 54.6 (2.75) 436.8 (68.09)
Windows 82.0 (3.77) 60.0 (2.83) 554.8 (31.56)

84.0 (4.45) 59.1 (1.91) 518.0 (90.16)

28% of the time, and the typical overlap in third-party URLs is
around 90%. The compact distribution of the lines indicates that
this phenomenon of different URLs being loaded is repeatable and
that these simultaneous crawls can serve as a baseline from which
to compare our other variables.

4.1.3 Jaccard similarities. In Figure 2 we report the distributions
of the mean Jaccard indexes across our different variables—time,
cloud vs. residential IP address, and operating system—compared
to the baseline distributions.

Figure 1: Distributions of pairwise Jaccard similarities
per site for third-party URLs loaded during simultaneous
crawls.

Figure 2: Distributions of mean Jaccard similarities between
pairs of crawls for all metrics and crawl comparisons.

Overall, we find that the variability of URLs is higher than the
variability of domains across our metrics. For the timed crawls,
which have pairwise comparisons spanning from 1 to 54 days,
there is a dramatic spread in the mean Jaccard similarity for both
fingerprinting script URLs and third-party URLs. This difference is
examined in detail in Section 4.1.4.

For our three operating system comparisons—OSX-Linux, Win-
dows-Linux, andWindows-OSX—we observe that they are all differ-
ent from baseline but not significantly different from one another.
That is, being on a different platform has a measurable impact on
the similarity of the resources you will be served, but no one plat-
form comparison stands out as being dramatically different from
any other. As just looking at means can obscure differences in the
full range of results, we verified that this conclusion is the same
when plotting the full distributions.

The Cloud-Local (Linux) comparison demonstrates the effect of
IP address. We note that the size of this effect is generally smaller
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Figure 3: Distributions of Jaccard similarity for third-party
URLs and domains over time. Baseline simultaneous crawls
in gray.

than for operating system or time with the exception of fingerprint-
ing script URLs.

For the domain metrics, the changes experienced over time are
comparable to variations across operating system and IP address.

4.1.4 Variation over time. To further explore the effect of time on
third-party resources, we plot the distributions of the Jaccard simi-
larities for all pairs of crawls, shown in Figure 3. Each distribution
is colored by the time between crawls, which range from 0.3 to 53
days. We see a clear trend: as the time between crawls decreases,
the density approaches the shape of the baseline. The distributions
of the Jaccard indexes quickly shift away from baseline and then
stabilize, which can be seen in the tightening distance between
distributions as the time difference increases. We explore this ef-
fect more closely in Figure 4 by looking at the distributions of the
means of our five metrics split into discrete time windows. For each
window, there is a noticeable drop in the Jaccard index compared
to baseline. A notable example is fingerprinting script URLs over
the 1-7 day time window. The median of this range is below 50%,
indicating that crawls performed a week apart would expect less
than half of their fingerprinting scripts to overlap, whereas the
median of the baseline range is above 80%. Though this difference
is particularly large, even less noteworthy drops in the Jaccard in-
dex will continue to compound over time to increase the difference
between crawls. Work to explore the nature of this churn is out of
the scope of this paper but would be valuable for understanding
the nature of the tracking ecosystem.

Figure 4: Distributions of mean Jaccard similarity between
crawls, aggregated into time blocks

4.2 Consistency over time in human Web
traffic

We now investigate whether we see similar effects over time in
the human traffic dataset. In particular, we analyse the change in
third-party domains accessed as a given user visits the same site
on different days. For each user, we compute the Jaccard similarity
between the third parties accessed on visiting each site domain on
two different days. We then aggregate to obtain the mean Jaccard
similarity score across all pairs of user visits that occurred N days
apart for each site. The distribution of these scores across sites
is displayed for each difference of N days in Figure 5, where we
have split apart domains in the Trexa10KU list and other domains
visited by the users. Since our dataset spans three weeks for each
user, we are able to compute distributions for N ranging from 1 to
21. The top panel of this figure serves as a loose analogy from the
user point of view to the time evolution for crawls presented in
Figure 3. Although we find similar evidence in the user data of the
leftward shift of the mode over time, the difference between the
distributions for small lags is striking. For a day lag of 1, the mean
Jaccard similarity over sites is only 40%, and few sites exhibit a
similarity above 80%, a range that accounts for the vast majority of
sites in the crawl data viewed over the same time lag. Interestingly,
the distribution over sites not belonging to the Trexa10KU list show
many more instances of both perfect agreement and no overlap,
averaging at 20% over non-list sites compared to 5% in the list.

4.3 Comparison of crawls and human Web
traffic

We begin by comparing the number of third-party domains ac-
cessed per site visit. We perform the comparison at the level of site
visit domains, aggregating both human and crawl datasets to an

7



WWW ’20, April 20–24, 2020, Taipei, Taiwan Zeber, et al.

Figure 5: Distributions of Jaccard similarity for third-party
domains within user and site visited across different date
lags.

Figure 6: Distributions over visited domains of average num-
ber of third-party domains accessed

average number of third-party domains across all visits to a given
domain. We then study the distribution of this value across unique
domains. As well as including all domains reported in the datasets,
we split out the subset of domains belonging to our base Trexa10KU
list. We present two versions of each distribution, one where all
domains are weighted equally, and a second where domains are
re-sampled according to their relative popularity in terms of visit
counts (“weighted”). This second view is more representative of
a “typical” domain selected at random from the domains in the
dataset. The distributions are shown in Figure 6.

We observe a compelling difference between the distributions,
as the crawler tended to access significantly more third-party do-
mains than users’ browsers on the same sites. Among Trexa10KU
domains, crawler site visits issued requests to a median of 11.6
third-party domains, whereas for visits by humans, the median
was 4.5 third parties. Results are similar, albeit slightly lower, when

Figure 7: Distribution over users of average number of third-
party domains accessed by visit domain (crawler value in
green)

taking into account all domains, suggesting that this difference is
primarily driven by the top most popular sites. When considering
the distributions weighted by popularity, the findings are similar
in both cases, although the user distribution is shifted even lower,
with the median dropping 35% to 2.9. Somewhat surprisingly, we
found similar, although weaker, differences when applying the same
analysis to the number of first-party requests.

Figure 7 sheds further light on these results by splitting out
individual top domains. For each domain, we compute the average
number of third-party domains across visits by each individual
user and represent the distribution across users in a boxplot. The
value obtained by the crawler is annotated in green. The domains
are selected as the subset of the top 100 Trexa10KU sites which
were visited by at least 50 users, of which there are 46, ordered by
their list rank. As well as displaying significant variation across
user experiences, we find that for a majority of these top domains,
the number of third parties reported by the crawler is well into
the right tail of the distribution, in some cases even exceeding the
maximum value reported by any individual user.

Next, we extend these findings by looking at the degree to which
the actual third-party domains accessed differ between human
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Figure 8: Distributions over visited domains of Jaccard sim-
ilarity in third parties between individual users and crawl
(per-visited-domain mean indicated in black)

browser users and the crawl. For each domain on the Trexa10KU
list, we find the Jaccard similarity between the full set of third
parties reached by each user on visiting sites at that domain and
the corresponding set of third parties recorded by the crawler. In
Figure 8 we display the distribution of average similarity values
across sites, as well as the distributions over sites of the similarity
values experienced by a sample of individual users. Overall, we find
that the average similarity in third parties is low, with a median
of 20%, and in most cases (87% of list domains) this is due to the
crawler accessing more third parties. Approximately 4% of domains
have no overlap whatsoever (Jaccard similarity of 0).

We now focus on third-party trackers and fingerprinters. Track-
ing domains are identified as those belonging to the Disconnect
block list. We apply the same analysis as for third parties above
to study the distributions of unique tracking domains to which
requests were issued between human traffic and the crawl. Results
are shown in Figure 9. The median number of tracking domains
accessed by a user on visiting a Trexa list site is 1.9, whereas for the
crawler it is 6.1. Furthermore, while users’ browsers only connect
to up to 8 trackers in 99% of visits to list sites, the crawler may
reach 26!

Finally, we explore the extent of fingerprinting between the
datasets. We identify fingerprinting scripts using a set of heuristics
as outlined in Section 3.2. Figure 10 shows the prevalence of dif-
ferent types of fingerprinting across the site visit domains in our
datasets, separating user traffic according to whether or not the vis-
ited site was on the Trexa10KU list. These results put occurrences
of fingerprinting at around 12% of the Trexa sites, of which the
majority is Canvas fingerprinting. In terms of fingerprinting scripts,
there is a strong agreement between crawl and user data, with dif-
ferences of at most 1% across all types. We also find fingerprinting
to be much more prevalent among top sites than others, in accor-
dance with previous literature. For each fingerprinting type, we also
computed the Jaccard similarities in the domains and URLs from
which the fingerprinting scripts are served between the datasets.
Although we found very similar prevalence figures, this shows that,
in fact, there is actually significant disparity between the sites serv-
ing fingerprinting scripts: domain overlap is in the 30-40% range
for most fingerprinting types. Overlap between the actual script

Figure 9: Distributions over visited domains of average num-
ber of known tracking domains accessed

Figure 10: Prevalence of fingerprinting across visit domains

URLs is much lower. Based on these results, we believe that future
crawl studies can be made more robust in terms of capturing the
state of the Web by including multiple replicates, simultaneous or
staggered over time, as appropriate. In particular, replicating crawls
simultaneously is a relatively inexpensive way to bolster study
results by providing an accompanying level of baseline variation.

5 DISCUSSION
The findings outlined in Section 4 provide a window into the dy-
namic nature of theWeb. All crawl comparisons showed that similar
amounts of content were being loaded, but the content itself was
not identical, overlapping by only 90% in third-party domains and
81% in URLs. This was the case even between simultaneous crawls
with identical configurations.

For each variable we examined (i.e., time, operating system, and
cloud vs residential IP address), there was a reduction in similarity
of the content being loaded relative to the baseline. Domains were
more similar than URLs, which is unsurprising as it is much sim-
pler and cheaper to dynamically change or update URLs compared
to domains. Of the decreases in similarity, time had a profound
effect for the similarity of URLs: in the most stark case, after three
weeks only 25% of fingerprinting script URLs were the same. Fu-
ture research should investigate this effect to better understand the
limitations of crawls for measuring the fingerprinting landscape.

There was a noteworthy effect of cloud vs. residential IP address
in fingerprinting script URL similarity. Although establishing a
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cause for this is out of scope for this paper, we note that finger-
printing can be used for anti-fraud and bot detection purposes [38].
As such, crawls coming from cloud IP addresses may be flagged
as potential bots and served different fingerprinting scripts as a
mitigation.

We also compared human traffic data with a companion crawl.
Our results provide new insights that should be taken into account
when extrapolating results from crawl studies to user experiences.
For example, although there were only minor differences in the
overall prevalence of fingerprinting across top sites, the specific
domains hosting fingerprinting scripts exhibited low similarity
between human and crawl data.

In Section 4.3 we find that crawlers tend to experience more
third-party activity than when the same sites are visited by hu-
mans, with the median number of tracking domains increasing
threefold. The high difference in the amount of traffic limited our
ability to bring additional insight by looking at the Jaccard similar-
ity between crawls and humans. Due to the observational nature
of data originating from client sessions, causal mechanisms respon-
sible for such variations could not be studied directly. While the
differential handling of automated crawler traffic has been raised
as a potential issue, our crawl-to-crawl analysis (e.g. Section 4.1.3)
provides some evidence that this may play a relatively minor role.
We note that prior research has shown cookie syncing to be ag-
gressive in the number of HTTP requests it generates and that
cookie syncing is not necessary for users who have already had
their cookies synced, whereas a stateless crawler browser instance
with a fresh profile would be a clear target for cookie syncing. En-
glehardt et al. [17] demonstrated that third-party cookie blocking
dropped the average number of third parties from 17.7 to 12.6, a
finding comparable with our results. Additionally, during the time
of our data collection period, cross-site-tracker cookie blocking was
being deployed to Firefox users [35]. Further analysis revealed that
crawlers also triggered a higher number of requests to first-party
domains compared to users. One interpretation is first-party par-
ticipation in the advertising and tracking ecosystem, which would
lead to similar interactions with cookies as with third parties. We
believe these findings merit further exploration in future work.

In Figure 5 we see that when the same user visits the same site,
even on the same day, the average similarity in third-party domains
is low. This is dissimilar to our crawl-to-crawl comparison where
we see an evolution of reducing similarity over time. It seems that
this result should temper the previous finding that users are exposed
to fewer third parties. Users may be exposed to fewer third parties
on any one visit, but if they are different each time, it might not
be long before they’ve accumulated many different third parties.
One possible explanation is that users’ interactions on a domain are
more heterogeneous compared to a crawler. Another is the complex
nature of the ad tech ecosystem: when a page is loaded, numerous
decisions are made about the type of ad shown to a user, including
the means of display, such as whether or not to participate in a
real time bidding auction [63]. Therefore, crawlers, which have
not accumulated advertising profiles, may be treated systematically
differently compared to humans. Exploring the dissimilarity of third
parties was out of scope for this paper. However, future work should
investigate this carefully to enable researchers to more accurately
represent the exposure of users to third parties in a crawl.

In general, there are a multitude of reasons why data collected by
a crawler may not be representative of the actual human browsing
experience. Crawls may fail to capture the diversity of user environ-
ments, including operating systems, geolocation, and profile history.
Users may also be seeing different portions of websites, such as
content specific to their interests (personalized or self-selected) or
content only visible in authenticated sessions or behind paywalls,
or they may be getting different localized content depending on
their geographic location. These sources of bias are inherent in
crawl research and difficult to design around. However, we believe
our results present a novel, pragmatic view into the aggregate effect
of these differences, and that future work could help to quantify
this phenomenon and provide potential solutions.

6 CONCLUSION
Web crawling is an essential tool in the study of the Web and
offers many advantages, not least circumventing the privacy issues
inherent in collecting human user data. However, we believe the
results obtained by crawling can be made even more compelling
when contextualized in terms of the fundamental variation inherent
in the Web and across the various user environments. Through
the numerous results presented above, we dive into an area with
significant implications for crawl-based Web research that has not
previously received much attention, namely the repeatability and
representativeness of crawl studies. We quantify the variability that
crawl data collection is subject to over time and across platforms,
as well as the baseline variation between identical crawls. We then
study the biases involved in associating crawl results with actual
user browsing.

The work we present here also raises a substantial number of
questions for further research. While we observe interesting pat-
terns of variation across a number of variables, the factors driving
these results are not yet well understood. Their exploration con-
stitutes an important direction for future work. Additionally, the
OpenWPM measurement framework produces a very rich dataset,
of which we have only scratched the surface in this work. There are
many other features of interest to which our methodology could
be extended, and we look forward to future research on this topic.
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